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ABSTRACT 
A cognitive radio by virtue of its ability to sense and adapt to the dynamic spectrum scenario, can increase the 

spectral efficiency .In order to be non invasive, a cognitive radio must adhere to strict benchmark in the quality of 

spectrum sensing for primary users of a band.Thus, spectrum sensing has a major role to play in cognitive radio 

.Many algorithms have been proposed to enable spectrum sensing such as energy detection and cyclostationary 

detection. IEEE 802.22, the first standard for cognitive radio devices, imposes strict requirements for the detection 

and false alarm probability on all spectrum sensing devices at SNR up to -20 dB. This requires use of robust 

spectrum sensing techniques. 

Energy detection is the simplest and near optimum technique that is widely used for spectrum sensing. However its 

performance is drastically affected by uncertainty in noise variance due to SNR wall [1]. Cyclostationary detection 

can exploit detection spectral correlation present in most modulated signals to reliably detect signal even at low SNR 

.All general QAM signals exhibit distinct cyclic frequency depending on their carrier frequency, baud rate etc. 

which can help to distinguish between the SOI (signal of interest) and interference. 

The filter structures for optimum MSME estimation of cyclostationary signals are frequency shift (FRESH) filters. 

The theory of cyclic Wiener filtering theory, developed by Gardner [2], forms the basis of LCL (Linear Conjugate 

Linear) filtering used in fresh filters. By adding appropriately frequency shifted versions of a cyclostationary signals 

,fresh filter can provide significant gains for cyclostationary detection .Hence is it intuitive to apply FRESH filter for 

spectrum sensing in the cognitive radio context . For upcoming wireless standard like WI-MAX and LTE, OFDM 

(Orthogonal Frequency Division Multiplexing) is used because of the advantage of multicarrier transmission . 

Spectrum sensing for OFDM signals is specially challenging due to the cancellation of cyclostationary features and 

efficient detection algorithm for OFDM need to be developed. 

 

 

     INTRODUCTION 
It was on this day that the European Union approved the introduction of a unified system for communication 

codenamed GSM (Global System for Mobile Communications), a technology that spearheaded the development of 

wireless services and devices, and exposed us to the immense opportunities and concomitant challenges that lay in 

harnessing its potential for future.  Starting from the need to communicate information over a long range, our needs 

in the present day have risen exponentially to include voice, data and multimedia communication.  This spiralling 

need has imposed an immense pressure on a precious resource, the radio spectrum. While this has led to many 

frequency bands being overused, such as the ISM band, studies [5] suggest that many frequency bands remain 

underutilized i.e. they remain free from their primary users for a substantial amount of time.  This opportunity can 

be exploited to serve the growing demand for spectrum by allowing unlicensed users to transmit their own data on 
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licensed bands with the precondition that the quality of service (QoS) of primary transmission is not compromised in 

any way. Such kind of opportunistic spectrum access forms the basis of a cognitive radio.  

 

Cognitive Radio 
Joseph Mitola coined the term `Software Defined Radio’, while pursuing his doctoral dissertation work at KTH 

Sweden in 2000 [6].  He called these radios up to 80% programmable beyond the antenna output terminals and thus 

capable of doing RF, IF, baseband and bitstream operations using high speed Analog to Digital to Analog (A/D/A) 

converters and microprocessors. Subsequently he extended the concept of a Software Radio to Cognitive Radio’ 

[7],[8] as follows. 

“(A cognitive radio is) a radio frequency transceiver designed to intelligently detect whether a particular segment 

of the radio spectrum is in use, and to jump into (and out of) temporarily unused spectrum very rapidly ,without 

interfering with the transmission of other authorizes users”. 
Such an intelligent radio would be able to learn about the network condition and structure. It could detect unused 

frequency bands and allow unlicensed to opportunistically access licensed bands without causing any interference to 

the primary user.  This would intuitively improve the spectrum utilization.  In the terminology of cognitive radio, 

users who do no have not obtained prior permission for accessing a band are referred to as secondary users while the 

authorized users of a band are called primary users. Studies have suggested that while most frequency bands are 

licensed to primary users, many of these like military, marine communication, amateur radio etc. remain highly 

underutilized giving rise to a virtual scarcity in spectrum [5]. Fuelled by such revelations along with exponentially 

increasing number of wireless devices in the market like cordless telephones, remote surveillance cameras, the 

interest in cognitive radios has been growing at an amazing pace. Cognitive radios require unlicensed users who 

what to use the licenised bands opportunistically, to be highly adaptive in their parameters like frequency of 

operation, modulation technique, power allocation etc. Figure 1.1 shows the opportunistic scenario in which a 

cognitive user operates. 

 
Figure : Dynamically changing spectrum scenario for a cognitive radio with black dots representing spectrum 

opportunities [3]. 

Haykin [4] states that a Cognitive Radio has to perform three basic tasks as listed below.  

(1)Radio–scene analysis: This consist of two main tasks, namely, 

 Estimation of interference temperature of the radio environment; 

 Detection of spectrum holes. 

The interference temperature in a band is a measure of the total RF interference present at the receiver with no 

primary signal present.  This helps define a limit on the maximum interference power a band can accommodate 

without adversely affecting the primary transmission.  Following the measurement of interference temperature, the 

RF spectrum is categorized as either white or black depending on whether it is occupied by high power signals or 

contains only ambient noise signals.  This categorization may be performed through many methods such as the 

MTM-SVD (Multi Taper Method Singular Value Decomposition) [9], energy detection [10] and cyclostationary 
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detection [11]. A while spectrum signifies a spectrum opportunity. This task of detecting spectrum holes or vacant 

spaces in the spectrum is called spectrum sensing. 

(2) Channel identifications: This consists of the following two tasks, namely, 

 Estimation of channel-state information (CSI) 

 Prediction of channel capacity for use by the transmitter.  

Channel state information can be estimated at the receiver by using pilot transmission or semi-blind approaches.  

Subsequently the channel coefficients must be tracked at the receiver through a mathematical model such as 

Kalman or particle filter.  The estimate of CSI must be fed back to the transmitter to enable adaptive 

modulation. 

(3) Transmit power control and dynamic spectrum management: Once the spectrum holes have been identified and 

their CSI estimates are available, a cognitive radio transmitter must choose its transmission bands accordingly and 

dynamically adjust them as and when the RF scenario changes.  It also needs to optimize the transmit power in each 

band, in sync with the interference temperature limit for that band. 

 

MATERIALS AND METHODS 
Any cognitive radio must be able to reliably sense the presence of unused spectrum resources which could be 

opportunity used for unlicensed transmission and concurrently also protect any incumbent licensed user from 

harmful interference .this necessitates that a cognitive user follow a listen before talk protocol. Such a protocol apart 

from setting up a definite framework for unlicensed access, would also lay down strict regulation on the QOS that 

must be met. the QOS in a cognitive radio context depend on parameter like probability of detection promised to the 

primary user ,rate of sensing to detect an upcoming in band primary user(how often is sensing performed),the 

duration of sensing and the response time for spectrum handoff in case a primary user is detected ,among others .the 

first global standard to legalise operation of cognitive devices IEEE 802.22 in tv which spaces has specified strict 

constraints on all the above mentioned parameter that all cognitive device used to adhere to. It states that all such 

devices will provide  𝑃𝑑  >0.9 and   , 𝑃𝑓<0.1  .it also states that all DTV SIGNALS OF RSS greater than 116 db and 

all wireless microphone signals above 107dn m must be detected .while the maximum detection time for an 

incoming in band primary user is around 1 minute in case of DTV signals, for low power wireless microphone 

signals that operate in the same frequency band ,that threshold is set at .5-2 sec. robust spectrum sensing at such low 

signals level in a short time requires efficient spectrum sensing techniques in the following section, we consider 

energy detection technique ,its mathematical model and its detection performance under low SNR wall. Following 

this, sensing using cyclostationary   detection is discussed and its mathematical background is presented along with 

simulation examples .it is a shown that cyclostationary detection is more robust than energy detection. 

 Energy Detection 
Energy detection is the simplest technique in terms of implementation complexity .its detects the presence of a 

signal by measuring the total incumbent energy in the band of interest and comparing it to a predefined threshold 

.this threshold must be decided in a manner, so as to limit to false alarm rate, and it can be set independent of the 

traditional signal energy. Once a noise and signal variance are known, the problem of spectrum sensing can be 

formulated as a binary hypothesis ,the received and transmitted signals are represented by their complex low pass 

equivalent .the two hypothesis may be formulated as follows: 

                                                                   𝐻0 : y(n)=w(n) 

                                                                   𝐻1 : y(n)= S(n) +w(n)                                        

Where y[n]is the received sample, w[n] is an AWGN sample with variance and s[n] is the transmitted signal value 

.At the receiver the test statics used is defined as the energy of N received samples. 

                                                          E= ∑ ‖𝑦(𝑖)‖2𝑁
𝑖=1                                                           

                                                        =∑ |𝑦𝑅(𝑖)|2𝑁
𝑖=1 +|𝑦𝑖|2 

Where N is the number of complex observation samples and y(n) denote the real and imaginary part of y [i]each 

having a variance of  𝜎𝑤
2  /2   .Under both the hypothesis the test statistic E is a sum of square of 2N real Gaussian 

random variable with equal variance .Hence the distribution of random variable E is the chi square distribution with 

a non centrality parameter 0 under 𝐻0 and 2𝛾 under 𝐻1. 

                                                    E=           {
ℵ2𝑁

2    , 𝐻0      

 ℵ2𝑁
2  (2𝛾), 𝐻0
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Where   𝛾  is the average SNR given by  𝛾  =
𝑃

𝜎𝑤
2    and P=

1

𝑁
 ∑ |𝑠(𝑖)|2𝑁

𝑖=1   .The probability of detection and false alarm 

are defined as 

                                          𝑃 𝑓 = Pr { E> 𝜆 │ 𝐻0            

                                                𝑃𝑑= Pr { E>𝜆 │ 𝐻1 }                                                                   

There are two ways of obtaining closed form expression for these probabilities. the first which is through direct 

integration of the chi-square distribution over the tail of the distribution function giving us the following results[28], 

                                      𝑃𝑓    =
𝛤(𝑁.

𝜆

2
)

𝛤(𝑁,0)
 

                                       𝑃𝑑 = 𝑄𝑁(√2𝛾, √𝝀)                                                                               

 

Where (𝞒.,.)   is the incomplete gamma function given by 𝞒(s,x)= ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
∞

𝑥
 and 𝑄𝑀(..,.0 is the generalised 

Marcum Q function given by 𝑄𝑀(𝛼𝛽) =  
1

𝛼𝑀−1 ∫ 𝑥𝑀𝑒−
𝑥2+𝑎2

2 𝐼𝑀−1(𝛼𝑥)𝑑𝑥
∞

𝛽
 where  is the modified Bessel function of 

first kind [29].Another way of computing  the probabilities in(2,4) is through application of the central limit theorem 

assuming that the number of samples in question(N)is high, in which case the resultant distribution become normal 

and hence expression for P4 and p can be obtained by finding the area under the Gaussian tail for which standard 

expression are available in terms of Q function .We first find the probability values assuming that N real samples 

y[n] are being used for energy detection in real samples Under this assumption, the mean of test statistic E under the 

hypothesis 𝐻0  and 𝐻1      can be found mathematically by observing the equation (2.2)and (2.1).the mean real 

values are given by  𝜇0=N𝜎𝑤
2  and 𝜇1 =N(   𝜎𝑤

2  + P). To find the variance of E under H0 , we computing the 

following, 

 

                          E{𝔼}2 =E{(∑ |𝑤(𝑖)|2𝑁
𝑖=1 )( ∑ |𝑤(𝑗)|2𝑁

𝑗=1 )}, 

   = ∑ 𝐸{|𝑤(𝑘)|2|𝑤(𝑘)|4} + 𝐸{∑𝑁
𝑖=1 ∑ |𝑤𝑖(𝑛)|2𝑁−1

𝑗=1 |𝑤𝑗(𝑛)|
2𝑁

𝑘=1 },(i≠j)(k is an integer) 

   =N*E{|𝑤(𝑛)|4}+ N*(N-1)E{|𝑤(𝑖)|2|𝑤(𝑗)|2},(i≠ j),                                                       

   =3N𝜎𝑤
4   +𝑁2𝜎𝑤

4 − 𝑁 𝜎𝑤
4 , 

  =2N𝜎𝑤
4    + 𝑁2𝜎𝑤

4                                                                                                                   

𝜎0
2 = 𝐸{𝔼} − 𝐸{𝔼}2,  

       =2N𝜎𝑤
4    + 𝑁2𝜎𝑤

4   - 𝑁2𝜎𝑤
4  

       =2N𝜎𝑤
4     

Through a similar analysis assuming independence of the signal and noise samples, the variance of the test statistic 

under H1 can be derived as   𝜎1
2 =2N(  𝜎𝑤

2  +  P) 2.Using these expression in the integral OF GAUSSIAN function 

from   𝝀  to infinity and using   Q(x)=
1

√2𝜋
∫ 𝑒
∞

𝑥

−𝑥2

2  dx   ,we get the following    ,                            

𝑃𝑓 =  
1

√2𝜋𝜎0
2

∫ 𝑒
−(𝑥−𝜇)2

2𝜎0
2  𝑑𝑥∞

𝜆

 

  = Q{
𝜆−𝜇

√𝜎0
2} 

        = Q (
𝜆−𝑁

√2N𝜎𝑤
4    

), 

    𝑃𝑑   = 
𝟏

√𝟐𝛑𝛔𝟏
𝟐 ∫ 𝐞

−(𝐱−𝛍)𝟐

𝟐𝛔𝟐∞

𝛌
                                             

= Q(
𝜆−𝜇

√𝜎1
2) 

           = Q(
λ−N(𝜎𝑤

2 +P)

√2𝑁(𝜎𝑤
2 +𝑃)2) 

 

Where 𝝀   is the threshold to be calculated .now, when incoming samples are complex ,the sum of square of N 

complex Gaussian random variable with variance 𝜎𝑤
2    is equivalent to the sum of squares of 2N real Gaussian 
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random variables with variance  
𝜎𝑤

2

2
 .Hence the complex signal case become a special case of real signal and correct 

probabilities for complex case are derived by replacing N by 2N and  𝜎𝑤
2    by 

𝜎𝑤
2

2
. 

𝑃𝑓 = 𝑄(
𝜆 − 𝑁𝜎𝑤

2

√𝑁𝜎𝑤
4

) 

𝑃𝑑 = Q(
𝜆−2𝑁(

𝜎𝑤
2

2
+𝑃

√4𝑁(
𝜎𝑤

2

2
+𝑃)2

) 

For a constant false alarm rate (CFAR) test also known for Neyman-Pearson test, we can select a desired maximum 

value for 𝑃𝑓   , calculate the corresponding threshold 𝝀   and use this threshold to compute the resulting 𝑃𝑑this gives 

us a mechanism to observe the probability of detection,also reffered to here from as detection performance ,of 

energy detection for different values of the parameters 𝑃𝑓   ,N (number of complex samples being averaged ,𝜎𝑤
2    (the 

noise variance) and P (the signal power). The two formulas in (2.8)can be solved together to eliminate  and yield an 

expression for N in terms of 𝑃𝑓  & 𝑃𝑑    .Eliminating   𝝀  we get, 

                                       N=
[𝑄−1(𝑃𝑓)−𝑄−1(𝑃𝑑)(1+2𝑆𝑁𝑅)]2𝑆𝑁𝑅−2

4
                                                 

 

The expression in [10] which holds for only real samples can be derived from this expression by doubling the value 

of N and replacing  𝜎𝑤

2
  

2  by   𝜎𝑤

2
 

2   . in this expression for any arbitrary SNR a corresponding N can be derived from 

that satisfies the constraints  of 𝑃𝑓  𝑎𝑛𝑑 𝑃𝑑 . Hence ideally energy detector can robustly detect a signal at any signal to 

noise to noise ratio given an appropriate number of samples .figure 2.1 shows that  𝑃𝑚𝑑  vs  𝑃𝑓 plots for two  

different values OF SNR and number  of samples N also known as receiver operating curves (roc) where 𝑃𝑚𝑑       

denotes probability of miss detection gives as (𝑃𝑚𝑑 = 1 − 𝑃𝑑. These curves have been obtained using equation 

(2.8)by calculating the detection probability corresponding to a range of value of the false alarm probability. As 

expected,with decreasing SNR also increasing for the same 𝑃𝑓  while increasing the limit  𝑃𝑓 causes   𝑃𝑚𝑑  to decrease 

concurrently also detection probability. It may be observed from figure 2.1 that for a given number of samples N ,as 

the signal power decreases from 10db to -15 db ,the miss detection probability increases meaning thereby the 

detection probability has decreased. Similarly for a given SNR increasing the number of samples available for 

sensing improves the average detection probability .this represents the fundamental trade off in a cognitive radio 

system. To  counter the effect of a worse channel ,a cognitive radio must either increasing its sensing time ,or be 

ready to accommodate a higher number of false alarm in order to maintain the same average probability of detection  

of primary user. Alternatively, the cognitive radio must sacrifice some data rate to continue operation below  the 

channel capacity .as a final recourse ,the cognitive radio may look to opt for a more efficient sensing techniques. it is 

the last choice that has been the motivation to design more efficient and robust spectrum sensing techniques. 
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Figure : ROC curves for energy detector for different  SNR and N (number of samples). 

 

CONCLUSION 
It  presents a comparative analysis of 3 spectrum sensing techniques viz. energy detection, cyclostationary detection 

and FRESH filter based detection .As energy detection is widely used and suffer many limitation ,the contribution of 

this thesis is to develop cyclostationary spectrum sensing technique  to robustly   detect a signal in the low SNR 

regime .IT presents the application of FRESH filter for spectrum sensing and present simulation result to 

substantiate the claim that  FRESH filter based detection can outperform other detection technique in signal carrier  

AWGN environment .For the multicarrier environment ,this thesis develops an optimal detector for induced 

cyclostationary in cyclic prefixed  OFDM ,and varies its superior performance over energy and cyclostationary 

detection techniques through simulation 
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